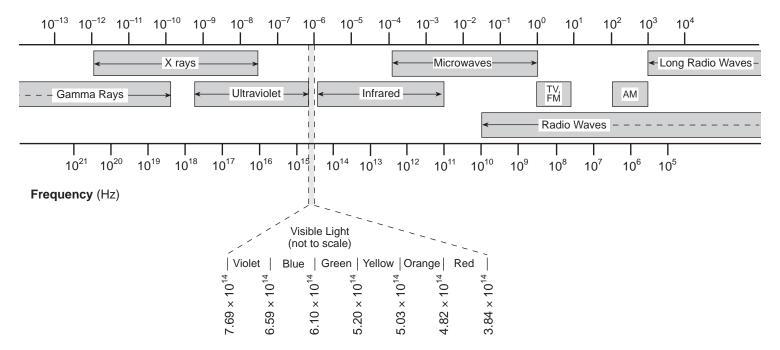
2002 Edition Reference Tables for Physical Setting/Physics

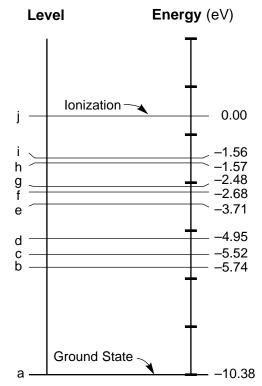
List of Physical Constants				
Name	Symbol	Value		
Universal gravitational constant	G	$6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$		
Acceleration due to gravity	g	9.81 m/s^2		
Speed of light in a vacuum	c	$3.00 \times 10^{8} \text{ m/s}$		
Speed of sound in air at STP		$3.31 \times 10^2 \text{ m/s}$		
Mass of Earth		$5.98 \times 10^{24} \mathrm{kg}$		
Mass of the Moon		$7.35 \times 10^{22} \mathrm{kg}$		
Mean radius of Earth		$6.37 \times 10^6 \text{ m}$		
Mean radius of the Moon		$1.74 \times 10^6 \text{ m}$		
Mean distance—Earth to the Moon		$3.84 \times 10^{8} \text{ m}$		
Mean distance—Earth to the Sun		$1.50 \times 10^{11} \text{ m}$		
Electrostatic constant	k	$8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$		
1 elementary charge	e	$1.60 \times 10^{-19} \text{ C}$		
1 coulomb (C)		6.25×10^{18} elementary charges		
1 electronvolt (eV)		$1.60 \times 10^{-19} \text{ J}$		
Planck's constant	h	6.63 × 10 ⁻³⁴ J•s		
1 universal mass unit (u)		$9.31 \times 10^2 \mathrm{MeV}$		
Rest mass of the electron	m_e	$9.11 \times 10^{-31} \text{ kg}$		
Rest mass of the proton	m_p	$1.67 \times 10^{-27} \text{ kg}$		
Rest mass of the neutron	m_n	$1.67 \times 10^{-27} \text{ kg}$		


Prefixes for Powers of 10		
Prefix	Symbol	Notation
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	С	10^{-2}
milli	m	10-3
micro	μ	10-6
nano	n	10-9
pico	р	10^{-12}

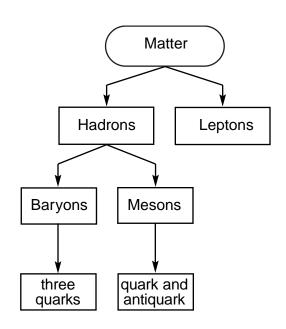
Approximate Coefficients of Friction		
	Kinetic	Static
Rubber on concrete (dry)	0.68	0.90
Rubber on concrete (wet)	0.58	
Rubber on asphalt (dry)	0.67	0.85
Rubber on asphalt (wet)	0.53	
Rubber on ice	0.15	
Waxed ski on snow	0.05	0.14
Wood on wood	0.30	0.42
Steel on steel	0.57	0.74
Copper on steel	0.36	0.53
Teflon on Teflon	0.04	

The Electromagnetic Spectrum

Absolute Indices o $(f = 5.09 \times 10^{14})$	
Air	1.00
Corn oil	1.47
Diamond	2.42
Ethyl alcohol	1.36
Glass, crown	1.52
Glass, flint	1.66
Glycerol	1.47
Lucite	1.50
Quartz, fused	1.46
Sodium chloride	1.54
Water	1.33
Zircon	1.92


Energy Level Diagrams

Hydrogen


Energy Levels for the Hydrogen Atom

Mercury

A Few Energy Levels for the Mercury Atom

Classification of Matter

Particles of the Standard Model

Quarks

Name Symbol Charge

$$\begin{array}{c}
\text{up} \\
u \\
+\frac{2}{3} \text{ e}
\end{array}$$

charm
$$c$$
 $+\frac{2}{3}e$

$$t + \frac{2}{3}e$$

strange
$$s$$

$$-\frac{1}{3}e$$

bottom
$$b$$

$$-\frac{1}{3} e$$

Leptons

electron e -1e

electron neutrino v_e

Note: For each particle there is a corresponding antiparticle with a charge opposite that of its associated particle.

Electricity

$$F_e = \frac{kq_1q_2}{r^2}$$

$$E = \frac{F_e}{q}$$

$$V = \frac{W}{q}$$

$$I = \frac{\Delta q}{t}$$

$$R = \frac{V}{I}$$

$$R = \frac{\rho L}{A}$$

$$P = VI = I^2R = \frac{V^2}{R}$$

$$W = Pt = VIt = I^2Rt = \frac{V^2t}{R}$$

Series Circuits

$$I = I_1 = I_2 = I_3 = \dots$$

$$V = V_1 + V_2 + V_3 + \dots$$

$$R_{eq} = R_1 + R_2 + R_3 + \dots$$

Circuit Symbols

$$\stackrel{\perp}{=}$$
 battery

A = cross-sectional area

E = electric field strength

 F_{e} = electrostatic force

I = current

k = electrostatic constant

L = length of conductor

P = electrical power

q = charge

R = resistance

 R_{eq} = equivalent resistance

r = distance between centers

t = time

V = potential difference

W = work (electrical energy)

 Δ = change

 ρ = resistivity

Parallel Circuits

$$I = I_1 + I_2 + I_3 + \dots$$

$$V = V_1 = V_2 = V_3 = \dots$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

Resistivities at 20°C		
Material	Resistivity (Ω•m)	
Aluminum	2.82×10^{-8}	
Copper	1.72×10^{-8}	
Gold	2.44×10^{-8}	
Nichrome	$150. \times 10^{-8}$	
Silver	1.59×10^{-8}	
Tungsten	5.60×10^{-8}	

Waves and Optics

$$v = f\lambda$$

$$T = \frac{1}{f}$$

$$\theta_i = \theta_r$$

$$n = \frac{c}{v}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$$

c = speed of light in a vacuum

f =frequency

n = absolute index of refraction

T = period

v = velocity

 λ = wavelength

 $\theta = angle$

 θ_i = incident angle

 θ_r = reflected angle

Modern Physics

$$E_{photon} = hf = \frac{hc}{\lambda}$$

$$E_{photon} = E_i - E_f$$

$$E = mc^2$$

c = speed of light in a vacuum

E = energy

f = frequency

h = Planck's constant

m = mass

 λ = wavelength

Geometry and Trigonometry

Rectangle

$$A = bh$$

Triangle

$$A = \frac{1}{2}bh$$

Circle

$$A = \pi r^2$$

$$C = 2\pi r$$

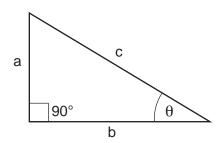
A = area

$$b = base$$

C = circumference

h = height

r = radius


Right Triangle

$$c^2 = a^2 + b^2$$

$$\sin \theta = \frac{a}{c}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

Mechanics

$$\overline{v} = \frac{d}{t}$$

$$a = \frac{\Delta v}{t}$$

$$v_f = v_i + at$$

$$d = v_i t + \frac{1}{2} a t^2$$

$$v_f^2 = v_i^2 + 2ad$$

$$A_y = A \sin \theta$$

$$A_r = A \cos \theta$$

$$a = \frac{F_{net}}{m}$$

$$F_f = \mu F_N$$

$$F_g = \frac{Gm_1m_2}{r^2}$$

$$g = \frac{F_g}{m}$$

$$p = mv$$

$$p_{before} = p_{after}$$

$$J=Ft=\Delta p$$

$$F_s = kx$$

$$PE_s = \frac{1}{2}kx^2$$

$$F_c = ma_c$$

$$a_c = \frac{v^2}{r}$$

$$\Delta PE = mg\Delta h$$

$$KE = \frac{1}{2}mv^2$$

$$W = Fd = \Delta E_T$$

$$E_T = PE + KE + Q$$

$$P = \frac{W}{t} = \frac{Fd}{t} = F\overline{v}$$

a = acceleration

 a_c = centripetal acceleration

A =any vector quantity

d = displacement/distance

 E_T = total energy

F = force

 F_c = centripetal force

 F_f = force of friction

 F_g = weight/force due to gravity

 F_N = normal force

 F_{net} = net force

 F_s = force on a spring

g = acceleration due to gravity or gravitational field strength

G = universal gravitational constant

h = height

J = impulse

k =spring constant

KE = kinetic energy

m = mass

p = momentum

P = power

PE = potential energy

 PE_s = potential energy stored in a spring

Q = internal energy

r = radius/distance between centers

t = time interval

v = velocity/speed

 $\overline{v}\,$ = average velocity/average speed

W = work

x = change in spring length from the equilibrium position

 Δ = change

 $\theta = angle$

 μ = coefficient of friction